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Abstract

A growing number of recent studies have suggested that the neuroplastic effects of
electroconvulsive therapy (ECT) might be prominent enough to be detected through changes of
regional gray matter volume (GMV) during the course of the treatment. Given that ECT patients
are difficult to recruit for imaging studies, most publications, however, report only on small
samples. Addressing this challenge, we here report results of a structural imaging study on ECT
patients that pooled patients from five German sites.

Whole-brain voxel-based morphometry (VBM) analysis was performed to detect structural
differences in 85 patients with unipolar depression before and after ECT, when compared to 86
healthy controls. Both task-independent and task-dependent physiological whole-brain functional
connectivity patterns of these regions were modeled using additional data from healthy subjects.

All emerging regions were additionally functionally characterized using the BrainMap database.

Our VBM analysis detected a significant increase of GMV in the right hippocampus/amygdala
region in patients after ECT compared to healthy controls. In healthy subjects this region was
found to be enrolled in a network associated with emotional processing and memory. A region in
the left fusiform gyrus was additionally found to have higher GMV in controls when compared

with patients at baseline. This region showed minor changes after ECT.

Our data points to a GMV increase in patients post ECT in regions that seem to constitute a hub
of an emotion processing network. This appears as a plausible antidepressant mechanism and
could explain the efficacy of ECT not only in the treatment of unipolar depression, but also of
affective symptoms across heterogeneous disorders.
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1. Introduction

Since its introduction to psychiatry nearly 8 decades ago (Cerletti and Bini, 1938),
electroconvulsive therapy (ECT) has proven to be a highly efficacious therapeutic approach
within a broad syndromal spectrum (American Psychiatric Association, 2001), improving
especially affective symptoms across disorders (Mukherjee et al., 1994; Chanpattana et al., 1999;
Chanpattana and Chakrabhand, 2001; UK ECT Review Group, 2003). At least in Western
industrialized countries, unipolar depression is the major domain of use (Leiknes et al., 2012), a
status that ECT largely has earned due to its superior antidepressant potential even in therapy-
resistant major depression (UK ECT Review Group, 2003). In the last decade, the neurotrophic
hypothesis has become the most favorite explanation approach for the mechanism of action. This
comparatively broad model, is based on the assumption that the clinical effects of ECT are
mediated by the restoration of dysfunctional neural networks, e.g., due to increased
neuroneogenesis, enhanced synaptogenesis or heightened axonal tropism (Kondratyev et al.,
2002; Santarelly et al., 2003; Piccinni et al., 2009; Tang et al., 2012; Inta et al., 2013).

While most of the findings supporting this hypothesis are derived either from animal models
(Malberg et al., 2000; Chen et al., 2009) or studies on neurotrophic markers in the peripheral
blood of patients (Kondryatev et al., 2002; Minelli et al., 2011; Bumb et al., 2015), a growing
number of recent studies have yielded evidence that the neuroplastic effects of ECT might be so
pronounced that they can even be detected by structural magnetic resonance imaging (MRI).
While various imaging modalities, such as, e.g., diffusion tensor imaging (DTI), have been
applied (Lyden et al., 2014; Nickl-Jockschat et al., 2016), most of the publications have focused

on changes of regional grey matter volumes during the course of ECT. Grey matter volume



increases in the medial, but also the lateral temporal lobe, the anterior cingulate cortex and the
insula, mainly lateralized to the right hemisphere, were amongst the most frequently reported
findings (reviewed in Yrondi et al., 2018).

Two main factors, however, challenge the notion that grey matter increases are necessary to
mediate the antidepressant effects of ECT. First, a majority of whole-brain VBM studies find
significant differences in patients in the course of the treatment, but systematic comparisons of
patients before and after ECT to healthy controls were not routinely conducted (Bouckaert et al.,
2016) and sometimes failed to detect significant volume changes in the course of ECT (Qiu et
al., 2016). While the seemingly paradox contrast of often highly significant longitudinal findings
without any significant changes in the group contrasts can be explained by the latter being
“noisier”, it impedes a clear-cut biological interpretation of the imaging results. In other words:
do volume increases due to ECT simply reflect a restitutio ad integrum of an endophenotype
associated with major depression or are more complex mechanisms involved?

Second, the fact that the relation of neuroplastic processes to treatment response remains unclear
in a broader sense challenges the notion that grey matter increases are necessary to mediate the
antidepressant effects of ECT. Comparatively few publications report on correlations between
grey matter volume changes and treatment response, but recent data challenges the notion that
such a connection exists (Sartorius et al., 2016; Oltedal et al., 2018). Additionally, a recent study
has found no correlation between gray matter volume increase and basic clinical finding
(Sartorius et al., 2019). Even more challenging seems the aspect that no grey matter changes
were found in a sample that responded to ECT, thus, raising the question, whether grey matter

changes were necessary at all to mediate the antidepressant effect (Nickl-Jockschat et al., 2016).



A considerable amount of this heterogeneity in findings might be attributable to relatively small
sample sizes. Voxel-wise approaches with unrestricted brain-wide inference spaces are powerful
tools for observer-independent data-driven analyses (Ashburner and Friston, 2005;2011).
However, adequate sample sizes are a key issue in these studies, because of the high number of
multiple comparisons across the voxels of the entire brain. ECT, in turn, is administered only to a
small number of patients, which are often amongst the most severely affected (Leiknes et al.,
2012; Loh et al., 2013) and, therefore, often hard to recruit for imaging studies. Important to note
here is that a recent study has published a mega-analysis of 281 ECT patients pooled from 10
different sites (Oltedal et al., 2018), which performed a region-of-interest (ROI) - based approach
limited to the hippocampus. While such an approach has its advantages due to a greater
sensitivity to pick up changes within a given brain region, it is unable to detect effects outside the
ROLI.

Given these difficulties to recruit large samples at a single site, pooling imaging data sets over
several sites seem to be an adequate approach to address this crucial problem and provide the
sample sizes needed for a robust detection of ECT-related neuroplastic processes. Addressing
these challenges, we here present a multi-site study that pools over a large data set of 85 ECT
patients with unipolar depression and 86 controls matched for gender and age. Utilizing this
large data set, the study was motivated by two major aims. Firstly, the study was aimed at
identifying regions that undergo structural changes in the course of ECT. To this aim we
performed whole-brain VBM analyses to detect brain structural differences in (1) patients before
and (2) after ECT compared to healthy controls, as well as (3) longitudinal changes in these
patients. This involved three separate VBM analyses, including two separate cross-sectional and

independent samples comparisons of the volumes of patient before ECT with healthy controls,



and patients after ECT with healthy controls, in addition to a longitudinal within-subject
comparison of patients before and after ECT. Additionally, since we regarded the identification
of the physiological properties of the regions structurally altered by ECT as a necessary first step
to better understand the pathophysiological changes in depression and its remission by ECT, a
second aim for our study was to understand and characterize the physiological functions of these
regions in healthy individuals. This was done using a data-driven approach, employing the
information provided by the BrainMap database that pools over neuroimaging experiments in
healthy subjects (Laird et al., 2009; Laird et al., 2011). Such an approach, which has been
previously used in studies that have investigated multiple disorders including schizophrenia and
depression (Goodkind et al., 2015) and psychopathy (Poeppl et al., 2019), avoids subjective
interpretations, but relies upon an observer-independent method. Furthermore, since the
physiological properties of a given brain region are largely influenced by its connectivity profile,
we analysed data from healthy subjects to carry out task-based and task-independent connectivity
analyses of the brain regions affected by ECT to delineate the connectivity profiles of these

regions.

2. Methods and Materials

2.1 Study design and participants

To obtain an adequate number of participants for robust statistics, a group of 85 patients with
major depression that had undergone ECT treatment and 86 healthy controls were pooled over
five different measurement sites (Aachen, Heidelberg, Mannheim, Marburg, Muenster) and
matched for age and gender per site. Patients underwent magnetic resonance imaging (MRI) to

acquire T1-weighted scans before start of ECT treatment and after completion of the ECT index



series using identical protocols. Healthy controls were subjected to two T1-weighted MP-RAGE
sequences within a time interval.

Patients were recruited based on a positive diagnosis of treatment-resistant unipolar depression
according to either the International Classification of Diseases (ICD-10) criteria in the case of the
Aachen and Marburg sites or the Diagnostic and Statistics Manual (DSM 1V) in the cases of the
Miunster, Mannheim and Heidelberg sites. Exclusion criteria for the patient sample across all
sites included severe psychiatric or neurological comorbididties, substance dependence, gravidity
and the general exclusion criteria for MRI studies. Healthy subjects recruited for group
comparisons did not have a history of neurological or psychiatric disorders and all subjects gave
written informed consent to participate in the study as approved by the local ethics committees.
Table 1 provides details of subject characteristics for each of the five sites. Table 2 summarizes

the parameters for MRI acquisition.

2.2 ECT treatment

ECT treatment across all sites was performed with a Thymatron® IV device (Somatics, LLC.
Lake Bluff, IL, USA). Treatment was generally started with right unilateral (RUL) electrode
placement however, treatment was switched to bilateral ECT because of insufficient response to
unilateral treatment. Additionally, it should be noted that other treatment parameters differed
between sites, namely with regard to the determination of the seizure threshold and anesthesia.

Table 3 gives an overview over the treatment parameters at each site.

2.3 Voxel-Based morphometry (VBM)


http://www.sciencedirect.com/topics/medicine-and-dentistry/psychiatric-disorders

T1-weighted images were segmented using the Geodesic Shooting Algorithm (Ashburner and
Friston, 2011) as implemented in the CAT12 toolbox (http://www.neuro.uni-jena.de/cat/) in
SPM12. The scans of the patients before and after ECT were processed using the longitudinal
segmentation in CAT12 (version r1184), which was specifically developed and optimized for
detecting subtle effects over shorter time ranges. The images before and after ECT intervention
were registered to their mean image for each subject using an inverse-consistent realignment.
Spatial normalization is estimated for the mean only and applied to both images. Images of
controls were individually normalized using the same algorithm and the modulated GM
segments were smoothed with 8mm FWHM. Differences across scanner sites including scanner
parameters, were controlled for statistically by treating site as a confounding variable and
removing any variance that is attributable to site prior to the group comparisons. The effect of
ECT treatment (pre-ECT-Pat<>post-ECT-Pat) was assessed via a paired t-test including total
intracranial volume as covariate. ANOVAs were computed for patients at baseline and controls
(pre-ECT-Pat<>Con), and patients after ECT and controls (post-ECT-Pat<>Con). Results were
assessed for statistical significance at a conservative threshold of p<0.001, FWE-corrected for

multiple comparisons.

2.3 Functional Characterization

The regions that emerged from our group comparisons were then functionally characterized
based on the meta-data from the BrainMap database (Fox et al., 2002; Laird et al., 2009, 2011),
using both forward and reverse inference, as performed in previous studies (Nickl-Jockschat et
al., 2015; Wensing et al., 2017). The key idea behind this approach is to identify all experiments

that activate a particular region of interest and then analyze the experimental meta-data



describing the experimental settings that were employed in these. This allows statistical
inference on the type of tasks that evoke activation in a particular region. This data-driven
approach, allows the study of brain-behaviour relationships at the meta-analytical level and
ensures that any subjective interpretation that could arise from individual studies is eliminated
and presents results based on a large number of studies.

In this study, we used behavioral domains (BD) from the BrainMap database that describe the
cognitive processes probed by an experiment. In the forward inference approach, the functional
profile was determined by identifying taxonomic labels for which the probability of finding
activation in the respective region/set of regions was significantly higher than the overall (a
priori) chance across the entire database. That is, we tested whether the conditional probability
of activation given a particular label [P(Activation|Task)] was higher than the baseline
probability of activating the region(s) in question per se [P(Activation)]. Significance was
established using a binomial test [p < 0.05, corrected for multiple comparisons using false
discovery rate (FDR)]. In the reverse inference approach, the functional profile was determined
by identifying the most likely behavioral domains, given activation in a particular region/set of
regions. This likelihood P(Task|Activation) can be derived from P(Activation|Task) as well as
P(Task) and P(Activation) using Bayes’ rule. Significance (at p < 0.05, corrected for multiple

comparisons using FDR) was then assessed by means of a chi-squared test.

2.4 Multi-Modal Connectivity analyses
Task-independent and task-dependent functional connectivity analyses were used to investigate
the functional connectivity across brain states of the regions that emerged from the cross-

sectional analyses. The regions that emerged from each of the contrasts were used as regions of



interest.

2.4.1 Task-independent - Resting-state functional connectivity

Seed-based RS analysis was used to investigate the task-independent functional connectivity of
each of the regions that emerged from the VBM analysis. Resting-state fMRI images of 192
healthy volunteers were obtained from the Enhanced Nathan Kline Institute — Rockland Sample
(Nooner et al., 2012). The local ethics committee of the Heinrich-Heine University in Disseldorf
approved re-analysis of the data. During RS acquisition, subjects were asked to look at a fixation
cross, not think about anything in particular and not to fall asleep. The image acquisition was
performed on a Siemens TimTrio 3T scanner using BOLD contrast [gradient-echo EPI pulse
sequence, TR =1.4 s, TE = 30 ms, flip angle = 65°, voxel size = 2.0 mm x 2.0 mm x 2.0 mm, 64
slices, 404 volumes]. Physiological and movement artifacts were removed from the RS data by
using FIX (FMRIB’s ICA-based Xnoiseifier, version 1.061 as implemented in FSL 5.0. (Salimi-
Khorshidi et al., 2014; Griffanti et al., 2014). This step decomposes the data into independent
components (ICs) and identifies noise components using a large number of distinct spatial and
temporal features via pattern classification. Unique variance related to the identified artefactual
ICs is then regressed from the data together with 24 movement parameters (including derivatives
and 2nd order effects as previously described and evaluated; cf. Satterthwaite et al., 2013). Data
were further preprocessed using SPM8 (Wellcome Trust Centre for Neuroimaging, London) and
in-house Matlab scripts. The first four scans were excluded prior to further analyses, the
remaining EPI images corrected for head movement using a two-pass (alignment to the initial
volume followed by alignment to the mean after the first pass) affine registration. The mean EPI

image for each subject was then spatially normalized to the ICBM-152 reference space using the
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“unified segmentation” approach (Ashburner and Friston, 2005). The resulting deformation was
applied to the individual EPI volumes, which were subsequently smoothed with a 5-mm FWHM
Gaussian kernel to improve the signal-to-noise ratio and to compensate for residual anatomic
variations. The time-course of each seed was extracted per subject by computing the first
eigenvariate of the time-series of all voxel within 5 mm of the seed coordinate. To reduce
spurious correlations, variance explained by the mean white matter and cerebral spinal fluid
signal were removed from the time series, which was subsequently band-pass filtered preserving
frequencies between 0.01 and 0.08 Hz. The processed time-course of each seed was then
correlated with the (identically processed) time-series of all other gray-matter voxels in the brain
using linear (Pearson) correlation. The resulting correlation coefficients were transformed into
Fisher’s z-scores, which were entered in a second-level ANOVA for group analysis including
age and gender as covariates of no interest. The data was then subjected to non-parametric
permutation based inference and thresholded at p < 0.05 corrected for multiple comparisons

using FWE on the cluster level.

2.4.2 Task-dependent: Meta-analytical connectivity modeling (MACM)

Meta-analytical connectivity modeling (MACM) was used to characterize the whole-brain
connectivity of each seed region during the execution of experimental tasks through the
identification of significant co-activations with the seed across many individual experiments
(Eickhoff et al., 2009; Laird et al., 2013). It thus benefits from the fact that a large number of
such studies are now available in a highly standardized format through the BrainMap database
(Laird et al., 2011; Fox and Hendler, 2014). First, all experiments that feature at least one focus

of activation in a particular seed region were identified in BrainMap. Next, the retrieved
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experiments were subjected to a quantitative meta-analysis using the revised activation
likelihood estimation (ALE) algorithm (Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012). This
algorithm treats the activation foci reported in the experiments as spatial probability distributions
rather than single points, and aims at identifying brain areas that show convergence of activation
across experiments. Importantly, convergence was assessed across all the activation foci reported
in these experiments. Consequently, any significant convergence outside the seed indicates
consistent co-activation and hence functional connectivity. Statistical significance was assessed

at p < 0.05 after correction for multiple comparisons (Eickhoff et al., 2016).

2.4.3 Consensus connectivity networks

A minimum statistic conjunction between the task-dependent and task-independent functional
connectivity maps was performed to generate a consensus connectivity network representing the
functional connectivity across brain states for each of the regions that emerged from the VBM
analysis. The regions present in the resulting consensus connectivity networks were functionally

characterized using the method explained above.

3. Results

3.1 VBM analysis

The VBM analysis resulted in no significant differences for the pre-ECT-Pat>post-ECT-Pat
contrast (FiglA). Conversely, significant wide-spread GMV increase was found for the post-
ECT-Pat>pre-ECT-Pat contrast in the bilateral insular cortices, left precentral gyrus, left

putamen, right postcentral gyrus, right middle frontal gyrus, right superior frontal gyrus and right
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caudate. A region in the left fusiform gyrus extending into the middle temporal gyrus was found
to have higher GMV for the Con>pre-ECT-Pat contrast (Fig1lC). No significant differences were
yielded when comparing the pre-ECT-Pat>Con contrast (FiglD). A similar region, albeit smaller
and more restricted to the fusiform gyrus was still found to have higher GMV in controls when
compared with patients after treatment (FiglE). The post-ECT-Pat>Con contrast yielded
significant right-hemispheric GMV increase in areas of the hippocampus and amygdala
extending into the thalamus (FiglF).

When carrying out functional characterization using BrainMap, the wide-spread area that was
found to have a significant GMV increase for the post-ECT-Pat>pre-ECT-Pat contrast was found
to be associated with emotion, perception and action execution (FiglB). The region in the left
fusiform gyrus extending into the middle temporal gyrus (FiglC) that was found to have higher
GMV for the Con>pre-ECT-Pat contrast was functionally associated with language, perception,
action observation and interoception, while the region that was found significant for the
Con>post-ECT-Pat contrast was found to be functionally associated with language, action
observation and action execution. Finally, the region yielded from the post-ECT-Pat>Con
contrast was found to be associated with emotion processing, perception, cognition and

interoception.

3.2 Consensus connectivity maps
Consensus connectivity maps were calculated for the regions that resulted from the VBM
analyses of the Con>pre-ECT-Pat, Con>post-ECT-Pat, and the post-ECT-Pat>Con contrasts.

Given its large size, it did not appear as meaningful to compute consensus connectivity maps for

13



the contrast pre-ECT-Pat<>post-ECT-Pat. These consensus connectivity maps represent the
functional connectivity of the original emerging cluster across brain states.

The consensus connectivity map of the cluster that emerged from the Con>pre-ECT-Pat contrast
showed interactions with bilateral regions in the middle temporal gyrus, fusiform gyrus, inferior
frontal gyrus, intraparietal sulcus and superior parietal lobe (Fig 2A). These regions were
collectively found to be associated with language, perception, spatial cognition, reasoning,
working memory, attention and action observation.

Similarly, the cluster in the fusiform gyrus that emerged from the Con>post-ECT-Pat contrast
showed interactions with bilateral regions in the fusiform gyrus, inferior frontal gyrus
intraparietal sulcus and superior parietal lobe (Fig 2B). Additional interactions with the bilateral
insula and left precentral gyrus were also noted. The resulting regions were found to be
functionally associated with language, perception, spatial cognition, working memory, attention
and action observation.

The consensus connectivity map of the cluster that emerged from the post-ECT-Pat>Con contrast
showed interactions with regions in the bilateral fusiform gyrus, putamen (Fig 2C). These
regions were found to be mainly functionally associated with emotion, perception, memory and

interoception.

4. Discussion

4.1 Grey matter changes in the course of ECT and their potential relationship to the main
effect of the treatment

At least in industrialized countries, therapy-resistant depression is usually the major domain of

ECT (Scarano et al., 2000; Leiknes et al., 2012). Increased severity of depressive symptoms at
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the start of the treatment goes along with a better response to the treatment (Kho et al., 2007).
However, it should be noted that ECT is efficacious in ameliorating affective symptoms across
the boundaries of different disorders, namely manic episodes (Mukherjee et al., 1994),
schizoaffective disorder (Ries et al., 1981) and organic affective disorders, respectively agitation
in dementia (Grant et al., 2001; Aksay et al., 2014). Of note, pronounced affective symptoms are
also a positive predictor of response to ECT in schizophrenia (Chanpattana et al., 1999;
Chanpattana and Chakrabhand, 2001). In contrast, effects of electroconvulsive therapy appear to
be less pronounced in schizophrenia patients regarding non-affective symptoms, such as auditory
hallucinations (Sommer et al., 2012) or negative symptoms (Chanpattana and Andrade, 2006;
Chanpattana and Sackheim, 2010). The findings of our study suggest that these therapeutic
effects are mediated via a grey matter increase in the right medial temporal lobe. The affected
regions — mainly the right hippocampus and amygdala — are involved in an emotion processing
network mainly consisting of classical limbic regions in the bilateral fusiform gyrus and the
putamen. The potential of ECT to modulate a central hub in this network provides a potential
explanation for the predominant effects on affective symptoms across disorders.

Our longitudinal findings revealed a GMV increase in the bilateral insula. The insula has been
previously reported to be an important structure in the pathophysiology of MDD (Nagai et al.,
2007; Takahashi et al, 2010; Sprengelmeyer et al., 2011) . Additionally, the insula has been
shown to be involved in emotional and sensorimotor monitor processing (Gasquoine, 2014), has
extensive connections with default mode network regions (Sliz et al., 2012) and is important in
the monitoring of internal states (Damasio et al., 2000). Thus, although still exploratory in
nature, it could be speculated that the GMV increase in the insula could be a marker for

treatment effects of ECT (Eijndhoven et al., 2016).
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Remarkably, some regions involved in the consensus connectivity network also showed an
association with mnestic functions. It deserves to be emphasized that cognitive-mnestic
impairments affect up to 40 per cent of patients undergoing ECT and are the clinically most
relevant side effects of the treatment (Coleman et al., 1996; Rehor et al., 2009; Semkovska and
McLoughlin, 2010). Although antero- and retrograde amnestic gaps due to ECT usually remit
fully within weeks after the end of the treatment, these side effects are the most frequent reason
for patients to discontinue the treatment (Eschweiler et al., 2007). Hippocampal dysfunction has
been frequently implicated in these memory impairments (Van Oostroom et al., 2018). As shown
by our study, ECT led to grey matter increases in a cluster that encomprised not only the right
amygdala, but also parts of the hippocampus. Our finding of network properties not only related
to emotion, but also to mnestic functions, indicate that the main effect and the side effects of the
treatment might be mediated by circuits that are — at least in certain hubs — spatially in close
proximity to each other. Future aims to improve the ratio between main and side effects will
have to consider this close neuroanatomical relationship between these circuits.

A frequently discussed question in the context of ECT-induced brain plasticity is the question,
whether the often reported grey matter increases in patients after the index series are a simple
restoration of a previous disease-associated atrophy to a healthy state or whether these findings
represent more complex healing processes (Lyden et al., 2014). Our data suggests the latter
interpretation of these grey matter increases. Patients with major depression at baseline indeed
showed a cluster indicating grey matter decreases compared to healthy controls in the left
fusiform gyrus. While this finding might appear as rather unrelated to depression at first sight,
modeling of the consensus connectivity network of this cluster revealed connectivity with the

DLPFC, resulting in a functional association with reasoning, working memory and attention
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(Zaninotto et al., 2015). These functions, in turn, are often impaired in major depression.
However, grey matter still appeared as decreased after the index series.

Although data from structural MRI alone is definitely not sufficient to draw valid conclusions on
the underlying neurobiology of the changes observed in grey matter volumes, we would like to
seize the chance to discuss two mechanisms potentially contributing to these changes: changes in
neuroplasticity and altered cellular volumes due to dysregulated neuronal ion intake during
seizures. Neurotrophic changes have been consistently implicated as a key mediator of
antidepressant response, in general, (Santarelli et al., 2003) and in ECT, in specific (Bumb et al.,
2015). Consequently, it would be proximate to suspect that a (hyper-)plastic process might be the
reason for these structural changes. However, one striking finding reported consistently across
neuroimaging studies in ECT patients was a lack of correlation between volume increases in the
medial temporal lobe and therapeutic response (Oltedal et al., 2018; Sartorius et al., 2019).
Consequently, we would regard increased neuroplasticity as sole or even main cause for these
changes as unlikely. Given that neuroplastic processes are widely regarded as necessary for an
antidepressant response (Santarelli et al., 2003), those should, - if indeed detectable by structural
MRI - therefore, be correlated with treatment effects. Despite these considerations, we certainly
cannot exclude the possibility that these volume increases are also caused by increased
neuroplasticity. Another potential explanation for these volume increases could be dysregulated
neuronal ion intake during seizures that leads to a subsequent increase of neuronal cellular
volumes. However, although such a mechanism has been shown to occur in epileptogenic
seizures (Glykys et al., 2017), it has not been researched in ECT to our knowledge. Future
imaging studies focusing in particular on changes of extra- and intracellular chloride levels could

provide important new insights into this question.
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Moreover, identifying common mechanisms of different antidepressant treatment strategies is a
major avenue towards understanding the underlying (patho-)physiological processes and could
help to optimize treatments. Given that TMS, besides ECT, is one of the most frequently applied
brain stimulation techniques. Unfortunately, most of the literature on TMS reports findings of
functional MRI studies (Philip et al., 2018). However a recent structural MRI study on patients
with major depression undergoing a high-frequency left prefrontal TMS stimulation reported a
hippocampal volume increase that was lateralized to the left side. The amygdala was not shown
to be structurally altered (Hayasaka et al., 2017). While these results should be certainly
reproduced in independent samples, they might indicate that structures of the medial temporal
lobe might mediate the therapeutic response of ECT, but that the two treatments might differ

with regard to lateralization and their effects on the amygdala.

4.2 Right-lateralization of hippocampal volume increase

One finding of our study is a hippocampal volume increase lateralized to the right hemisphere.
This finding is corroborated by another recent pooled multicenter study which also reports a
lateralization of volume increases to the right hippocampus (Oltedal et al., 2018). Another
meta-analysis revealed no overall difference, but still a numerical difference with larger volume
increases of the right hippocampus (Wilkinson et al.,, 2017). A recent study using data
overlapping with our sample has reported a sub-analysis on patients that had only received RUL
ECT, and found that this subgroup did not significantly differ from the rest of the group with
regards to GMV increases. This seems to indicate that electrode position alone might not be the

only reason for the laterality of GM increases. The explanation of the lateralization to the right
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hemisphere that is reported in the present study remains largely unclear, however, we would
suggest that this could be additionally been influenced by the underlying disease itself, since
functional brain abnormalities in the right hemisphere have been frequently reported in mood

and stress related disorders (Cole et al., 2011; Dunham et al., 2009).

4.3 Hippocampal changes and their potential effects on mnestic side effects of ECT

Volume changes of the hippocampus during the course of ECT have been repeatedly reported by
MRI studies (Nordanskog et al., 2010, 2014; Tendolkar et al., 2013; Abbott et al., 2014). These
findings were usually interpreted as gross morphological correlates of neurotrophic effects, such
as increased neurogenesis, enhanced synaptogenesis or heightened axonal tropism (Kondryatev
et al., 2002; Santarelli et al., 2003; Piccinni et al., 2009; Tang et al., 2012; Inta et al., 2013), and,
thus, associated with therapeutic response. Consequently, the assumption of a positive
correlation between hippocampal volume increase and treatment response has been the prevalent
notion in the field (Tendolkar et al., 2013; Dukart et al., 2014; Wilkinson et al., 2017). Recent
data has challenged this hypothesis: hippocampal volume was shown to be correlated with the
number of treatments, but not with antidepressant treatment response in a large multi-site sample
of patients with major depression (Oltedal et al., 2018). The authors interpreted these findings as
evidence that hippocampal volume increases might be an epiphenomenon that is unrelated to the
antidepressant mechanism of ECT. This idea has been previously discussed also by other authors
(Nickl-Jockschat et al., 2016). Moreover, a recent study using sample overlapping with the
present study, has shown that changes in the HAMD scores do not predict changes in gray matter
volume (Sartorius et al., 2019). Specifically, changes in grey matter volumes did not correlate

with clinical improvement as measured by the HAMD.
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The findings of our study seem to provide a possible explanation for these seemingly
contradicting results between the findings reported by Oltedal and colleagues and Sartorius and
colleagues as compared with previous studies (Tendolkar et al., 2013; Dukart et al., 2014;
Wilkinson et al., 2017). Our results indicate that ECT causes structural changes in a region that
contains hubs for two important networks: one associated with emotion-processing and one
related to memory. As hippocampal regions are known to play a pivotal role in memory, but a
less prominent one in the processing of emotions, the interpretation of hippocampal volume
increases due to ECT could indeed be an epiphenomenon (Oltedal et al., 2018), whereas
structural changes in the amygdala could be responsible for mediating the antidepressant effect.
This is supported by a recent study showing that ECT leads to a normalization of amygdala
reactivity to emotional stimuli, and further, that the extent of changes in amygdala reactivity is
associated with symptom improvement (Redlich et al., 2017). Therefore, given the results of our
study presented here, we would interpret the negative results reported by previous studies as an
indicator that the location of the grey matter increases, and their subsequent influence on neural
circuits were more important than their extent.

Of note, while our data certainly does not allow to infer on changes of connectivity in patients
with MDD due to ECT, the results of our study seem to support the idea that changing functional
connectivity is a main therapeutic mechanism of electroconvulsive therapy (Perrin et al., 2012).
Following this line of thought, it is tempting to speculate that volume changes of the amygdala
might not be linearly correlated with therapeutic response. Changes of network connectivity

might be more important than volume increases per se.

4.4 Methodological considerations
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We here report data from a retrospective multi-site study. This study design goes along with
various limitations. For example, there were no a priori protocols for electrode placement,
adjustment of charge due to seizure quality, standardized end points or scanner parameters.
While we have adjusted for potential site effects as confounds, it should be noted that
prospective multi-site studies do not go along with these limitations. However, as ECT patients
are a comparatively rare clientele, at least in industrialized countries (Case et al., 2013; Loh et
al., 2013) and often remain reluctant to participate in neuroimaging studies, our pooling approach
appears as worthwhile to gain further insight into the therapeutic mechanisms of ECT.

To delineate the physiological task-dependent and task-independent networks of structurally
altered brain regions, we here used two well-validated and widely used approaches (Laird et al.,
2009, 2013). While these approaches allow robust inference on co-activation patterns in healthy
subjects, it should be noted that these results do not allow direct inference on changes of
connectivity in patients undergoing ECT. However, we would like to point out that the use of
these approaches was motivated by our main aim to better understand the physiological
properties of brain regions that are affected by ECT treatment since the characterization of the
physiological properties of a brain region is a prerequisite to fully understand its role in disease-
and treatment-related processes. Therefore, our findings here can serve to generate hypotheses
for future neuroimaging studies on the therapeutic mechanisms of ECT.

We here enrolled patients with major depressive disorder. This certainly helps to create a
homogeneous patient sample, but certainly limits the generalization of our findings. Future
studies on patient cohorts with different disorders undergoing ECT will elucidate, whether

electroconvulsive therapy exerts similar structural changes across disorders.
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It remains open, how this emotion processing network is related to the functional neuroanatomy
of depression. A major obstacle in this regard seems to be the clinical and pathophysiological
heterogeneity of depression. Previous meta-analyses on fMRI studies of disturbed neural
networks have repeatedly reported changes in fronto-limbic networks (cf. DeRubeis et al., 2008),
but often differ markedly with regard to the exact brain regions that are affected (Fitzgerald et
al., 2008; Diener et al., 2012; Graham et al., 2013; Lai, 2014; Palmer et al., 2015). The currently
largest meta-analysis did not find any convergent results for changes in neural activations
associated with cognitive of affective tasks in MDD patients (Mdller et al., 2017). Future studies
will help to elucidate, whether — and if yes: how — this pathophysiological heterogeneity
corresponds to treatment response. An additional point to consider is the fact that depression is
well known to be comorbid with anxiety disorders, with epidemiological studies showing
consistently high comorbidity rates ranging from 40-80% (Hirschfeld, 2001; Lamers et al.,
2011). Since a significant number of patients with such a comorbidity have been found to be
treatment-resistant (Breier et al, 1984; Clark & Watson, 1991; Gorman, 1996), the possibility of
comorbidity with anxiety in the sample used for the current study should not be excluded. As the
insula appears as a major cerebral hub mediating anxiety symptoms via various neural
mechanisms (cf. McGrath et al., 2013; Fonzo et al., 2014; Fonzo et al., 2016; Strigo and Craig,
2016; Craig, 2015), our finding of longitudinal grey matter increases in the right insula could be
indicative of an effect of ECT especially on symptoms related to anxiety. Due to the
retrospective nature of our study, it was, unfortunately, not possible to follow up further on
whether the clinical effects of ECT in our cohort were driven by an improvement mainly of
depressive core symptoms (depressive mood, lack of energy, anhedonia), anxiety-related

depressive symptoms or comorbid anxiety disorders. The therapeutic effects and, hence, the
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underlying mechanisms, of ECT are usually seen as rather unspecific. Consequently, our
findings of grey matter changes in the insula that might cause a general effect on anxiety levels
fit very well into that hypothesis.

Inferences from MRI data sets on a microstructural level certainly remain speculative.
Consequently, our data cannot provide answers to the question, whether the observed grey matter
increases are indeed caused by neurotrophic effects or not. However, it deserves to be pointed
out that little has been known so far about how these structural effects are related to functional
brain networks. Our study addresses this open question and provides first data-driven evidence

that ECT induces grey matter increases in a hub of an emotion processing network.

5. Conclusion

We here provide evidence for grey matter increases mediated by ECT in a region of the medial
temporal lobe, an important hub for networks related to emotion and cognition. This appears as a
plausible antidepressant mechanism and could explain the efficacy of ECT not only in the

treatment of unipolar depression, but also of affective symptoms across heterogeneous disorders.
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Table 1
Overview over the demographic characteristics of the patient sample from the 5 sites. Sample
sizes, mean age, sex ratios, mean number of ECT and Hamilton Depression Scale (HAMD)

scores before and after ECT are reported for each of the sites separately and the pooled sample.

Table 2
Overview over the acquisition parameters and the time points of the scans used at each of the 5
sites. Reported are the time points for the first (= before the ECT index series) and the second

scan (= after the ECT index series), as well as the MR scanner and the sequences used.

Table 3

The treatment parameters at the five sites. Reported are the methods for determining the first
stimulus dose (age method vs. titration method), the initial electrode placement and the
adjustment of stimulus dose and electrode position in the course of the treatment. RUL = right
unilateral electrode position, LART = left anterior-right temporal electrode position, BL =

bilateral electrode position.

Table 4

Coordinates of the peak maxima and the size for each of the clusters that stem from our

longitudinal intra-individual contrasts (above) and the cross-sectional comparisons (below).
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Figure 1

VBM results in (A) patients before treatment when compared to patients after treatment, (B)
patients after treatment when compared to patients before treatment, (C) healthy controls when
compared to patients before treatment, (D) patients before treatment when compared to healthy
controls, (E) healthy controls when compared to patients after treatment and, (F) patients after
treatment when compared to healthy controls. All results were assessed for statistical
significance at a conservative threshold of p<0.001, FWE-corrected for multiple comparisons,

k>500.

Figure 2
Functional connectivity maps across brain states of regions emerging from (A) Con>pre-ECT-
Pat, (B) Con>post-ECT-Pat and, (C) post-ECT-Pat>Con contrast. All results were assessed at

p<0.05, FEW-corrected for multiple comparisons, k>10.
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